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I. INTRODUCTION

The theory and technique for determining the temperatures of gases from
their Fourier transform infrared s?ectra, in emission and absorption, has been
well documented in the literature. Frequently, temperature determination
involves fitting peak absorbances of rotational fine structure within a
vibrational transition to a Boltzmann-type population expression,“ since the
relative absorbances are strongly temperature dependent. One of the
difficulties associated with calculating the temperature of a gas from the
peak absorbances of ro-vibrational transitions is instrumental distortion of
peak absorbance values. This distortion results from the convolution of the
source intensity (modulated by the sample) and the instruient lineshape
function (ILS), and is most important in spectra obtained at moderate to low
resolution (here taken to correspond to optical retardatiuns of less than
~1.0 cn). The nethod for correcting the error in observed peak absorbance due
to this cogvolution as applied to FTIR spectroscopy was first described by
Griffiths.

The analytical treatment of most physically encountered convolutions is
difficult.” To our knowledge, no analytical solution to the resulting
"convolution integral"™ for transmission spectra obtained on a FTIR
spectrometer has been reported. Ve have recently investigated and quantified
the relationship between observed and undistorted peak absorbances neasured by
FTIR specgroscopy. This relationship was first quantified by Griffiths and
Anderson. Our goal is to develop a reasonably accurate (within ~5%)
graphical method to obtain the temperature of a gas sample at elevated
temperatures (>500 K) from absorption spectra in the infrared using resources
typically available in an analytical laboratory. We assume this to be a
Fourier transforn IR spectrometer capable of 1 cm ~ resolution and a
nicroconmputer of virtually any type. The graphical method is not intended to
supplant the more accurate iethods already in the literature,1> but rather to
provide a fast anu convenient complemontary view of the data. To date, we are
unaware of any successful temperature estimations from peak absorbances of ro-
vibrational transitions which have employed graphical methods over a
temperature range of several hundred degrees.

II. BACKGROUND

For a Fourier transform spectrometer employing triangular apodization of
the interferogram, ths observed minimum transmittance, T of an absorption
feature with a Lorentzian profile centered at frequency Vs Mmay be given by:

Ty = [ exp(-2.303A 535/ ((v=vy) 24223} Dsin? {piD(v-v,)) 1/ 0
1
. 2
[piD(v-v,)]1“ dv

where Apm is the true peak absorbance of line p at frequency v, a, is the
linewidth, D is the maxinun optical retardation of the spec’roneter, and pi is
3.1416. Here, n is the line index number, where m=-J" for P branch
transitions and m=J"+1 for R branch transitions.” This equation describes the
nininun transmittance of an isolated pressure broadened line where the
absorption feature is unobscured by an reighboring lines. Lquation (1) is a

functicn of temperature through the dependence of c.ie linewidth, ay; on




temperature, The variation of avl with tenperature and pressure nay be
calculated by the approximation:

an(T,P) = apg(B/Bg) (To/T) (2)

where Py and Ty are a pressure and temperature for vhich the linewidth a,g 1is
known, P and T are the experinental pressure and temperature, and n is the

empiricallg deternined temperature broadening exponent. The coefficient n has
been shown” to be temperature and line dependent. For the sake of 8

sinplification, n is usually set to 0.75, although there is evidence” that a
value of 0.66 may be more accurate at room temperature.

True peak absorbance may be fit to temperature, T, using:9

Apn @ |m|F(m)vexp(~E(n) /kT} /2y, (3)

where a, varies as in Lq. (2), E(m) is the rotational energy of the lower
state in the t:ransition6 F(m) is the Hermann-Wallis factor for interaction of
rotation and vibration,” and lm| is the absolute value of the line index
nunber. The linewidth appears in the denoninator of Eq. (3) to take into
account the dependence of the peak height on fsak width for a spectral
absorption feature with a Lorentzian profile.

By substituting Eq. (2) into Eq. (1) and obtaining an analytical solution
to the integral, an expression relating observed minimun transmittance (and
hence observed peak absorbance) to true peak absorbance may be obtained. If
we denote this expression as:

Ao = £(T,,ap,D) (4)
and combine this with Eg. (3) we obtain:
£(T,,a,,D) « |m|F(m)vmexp{-E(m)/kT}/am (5)

The first step in linearizing Lq. (5) igvglves finding an approximation
to Eq. (1). Griffiths gives the expression:~?

xRy
Ao & Aobs R (6)
_where R, the resolution parameter, is equal to 1/(2Da_) and x and y are set
equal to 2. If this expression is substituted into Eq. (5), and the
tenperature broadening exponent n is assumed to be invariant with m, one
obtains:

Aops™/1(2Da )Y (|n|F(m)v )} o exp{-E(n)/kT) (7)

Wthen ambient tenperature sgfctra are collected (for which the ay for many
diatomics are accurately known) and the resolution paraneter for the ro-
vibrational lines being used in the calculation is such that there is a near
linear relationship’ between log(A ) and log(A.,.), a graph of L(m)/k vs.
ln[Aobsx/{(ZDamo)y—l(ImIF(m)vm)}] produces a straight line with a slope (1/T)
the inverse of which usually falls within a percent of the true gas
tenperature.’ As the temperature of the gas being investigated is_increased,
the error between the calculated and actual temperature increases.” This




increase in error is caused by the change in aj with T, which affects the
resolution paraneter K, and may shift the relatlonshlp between log(A ) and
log(A,,g) into a nonlinear region. Also, as stated earlier, the temperature
broadenlng exponent, n, froa Lq. (2) changes with temperature and, for a given
tenperature, may vary with line index nunber.

TiI. CALCULATIONS

\le have fit input parameters and the result of the numerical integration
of Eq. (1) to an equation of the form:

Aom = kAobsny (8)
vhere k, %, and y are constants and R is the spectral resolution parameter.
The integral in Eq. (1) was evaluated numerically for all combinations of
optical retardzations of 1, 2, 4, 8, and 10 cm, true peak absorbances of 0.l
to 10 (in intervals of 0.1) with absorbing lines for which a, ranged from 0.0l
to 0.1 cn™! (in intervals of 0.0l cn™l). A weighted line - least squares
routine was used to fit the data from portions of the numurical integration of
qg. (1) to a linearized form of Eq. (8).

The integration routine assuped that v, was l?cated at 2000 cm_l, and
elevated Eq. (1) using Simpson 's!? rule for 50 ez * on either side of v+ The
interval to be numerically integrated was divided into 10,000 segments. The
choice of value for the center of absorptionm, v, is arbltrary, as nay be
verified by substituting v-v_ in Eq. (1). To determine if numerical
1ntegrat}on gave values dependent on the value of v, ranging from 500 to
3500 cw showed the value of the integral to be independent of the value for
this parameter.

% application of our numerical integration routine to the function
sin x/\ (which is similar in behavior to Eq. (1) yet has an analytical
solution) using paraneters sinilar to those in the numerical integration of
(1) gave results within 0.001% of the analytical solution. Ve believe our
numerical integration of Lq. (1) gives similar accuracy.

For all ranges of A,., values used in the integration of Eq. (1), the
average deviation between the numerically integrated value —10g(Tm) and the
fitted appronination presented here was less than that of Lq. (6) with x and y
equal to 2. In fairness, the authors of Reference 5 presented their
approxination without derivation and in no way implied it to be valid over any
range other than that specified in the paper. In addition, for the range over
vhich the approximation of Reference 5 was used, that approximation and the
fitted approximation developed here are in good agreenent.

For spectra of gases below 800 K, the integral in Eq. (1) was evaluated
for true peak absorbances, A m» ranging frow l to 5 absorbance units, a
optlcal retardation of 1 cm, and a, values ranging from 0.0l to 0.] ch e
These pdrauelers are typical for uO at pressures of scveral hundred torr.
The best fit values obtained for In(k), x, and y in Eq. (8) were 0.122 (.014),
1.818 (.014), and 1.748 (.015), r=epectively, where the numbers in parentheses
are equal to one standard deviation. TFor the same parameters mentioned above,
but for peak absorbances ranging from 0.1 to 1.0 absorbance units, the best
fit values os 1ln(k), x, and y were respectively, 0.211 (.00004), 1.287




(.00002), and 1.298 (.N0002). The spectroscopic constants used to calculate
E(n) and F(n) nay be found in Reference 13. Values of v, used in the
calculation are those reported by the spectrometer. Values of a, were
obtained from Reference 5. TFor this work, it was assumed that all gases had
the sane broadening effect on the a, for €0 as did CO. The additional error
probably is insignificant given the assumption that n is constant.

11

At temperatures below 600 K, 20 lines from the R branch (because it is
nmore intense than the P branch and for reasons given below) in the fundamental
absorption band of CO were used in the calculation. To czlculate the
temperatgre, Lq. (7) was first linearized, and a w “ghted linear least
squ,aresl routine used to determine 1/T.

To decide which lines will be used to calculate temperatures from FTIR
spectra, it is necessary to establish a criteria for line acceptability.
Lines which are significantly overlapped by absorbances due to hot band
traasitions or to absorbances by isotopically substituted homologues should be
excluded from the couputation. Figure 1 shows a portion of the CO spectrum in
2 cell held at 866 K. Visible in th%s figure are absorbances due to ““CC and
those due to the 1-I transition in 1 CO, as well as the nmuch more intense
fundanental transition. The error caused by hot band overlap is very
tenperature sensitive and becomes most important at high temperature. Figures
2 and 3 show the line center separation in wavenumbers between fundamental and
hot (v=1-2) gand transitions in ordinary CO between fundamental transitions in
normal and 13C substituted CO, respectively. These figures were §§nerated by
calculating rotational energy levels fron spectroscopic constants*” for the
appropriate species/vibrational level, calculating transition frequencies
using conventional selection rules,*” ordering these transitions with respect
to the energy of transition, and then taking the difference in energy between
each successive level. This energy difference is plotted versus the energy of
the transition with the lower energy. For each species considered, I" values
from 0 or 1 to 30 were used. At a glance, each of these figures provides a
good idea of where regions of ninimum line overlap exist for the fundamental
absorption of CO. Because these figures doe not include intensities of
individual transitions, they cannot indicate where a weak fundameuntal
absorptign line used in the calculation is overlapped by a signficiantly
strong ~~CO line, for example, or vice versa. For CO, typical ranges of lines
to use in the calculation are the 20 lines in the regions 2059-2139 cn™* (P-
branch J"=1-20) and/or 2147-2212 cn~} (B-branch J"0-19). An examination of
Figure 2 shows that these two regions of the fundamental absorption in CO
significantly overlap with the v=1-2 transitions in CO, with the P branch
being slighE}y less obscured. However, since the 1-2 envelope is shifted by
about 25 cm ° to lower energy than the 0-1 envelope (not apparent from the
figure), tne R branch of the 0-1 transition is relatively unobscured by those
1-2 transitions which have appreciable intensity at normal temperatures.

Figure 3 shows that both branches in the fundamental absorption of 20
have several lines with separation between line centers for overlap with 13¢o
of 1f§s than 0.5 cm_l. _?owever, because the band centers differ between CO
and "“CO by about 45 cm ~, the R branch of CO is relative}g unobscured by
overlap from the R branch of *“CO (since the K branch of ““CO overlaps the P
branch of CO). Therefore, Figures 2 and 3 suggest using thz R-branch of CO
for temperature determinations at teuperatures where hot band transitions are
not important. At higher temperatures, Figure 3 suggests a switch to the
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P=branch of CO foi tenperature deterninations wvhen 1-2 transitions become nore
troublesome than CO transitions.

IV. EXPERIMENTAL

All tenperatures reported here were obtained from absorption spectra.
Since the heated cell/burner was located in the sauple compartment of an
otherwise unnodified FTIR, infrared enission was unnodulated, and no attempt
was made to collect emission spectra. ilo correction was made to the spectra
to account for emission. Experiments were performed on a ilattson Sirius 100
FTIR spectroneter using a HgCdTe liquid nitrogen cooled detector. All spectra
vere obtained with 100 co-added scans obtained at 1 cm = resolution.
Interferograms were triangularly apodized and zero-filled to the limit of our
computer nemory (131072 points) prior to transformation.

Tenperature controlled stainless steel cells were eciipped with NaCl
windows. The pathlength for absorption in each cell was pproximately
12 cm. TFor the temperature range 300 K to 473 K, the i#aCl windows were
attached to the cell body using metal flanges and fiber gaskets. The leak
rate of this cell at all temperatures used was always less than 500 mtorr/
hr. Pressures used in these low temperature experinents (<473 K) ranged from
115 to 197 torr. For the cemperature range from 473 K to 773 K the NaCl
windows were attached directly to the cell body by pressure supplied by
flanges. To prevent heat loss, the high temperature cell was encased in
asbestos which extended approximately 1 inch past the windows on either side
of the cell. No other precautions were taken to avoid temperature gradients
along the optical pathlength. The leak rate of this cell wa such that all
high temperature experiments were performed at 760 torr total pressure using a
4:1 nixture of air:CO. A check of the instrument after filling this cell,
allowing it to stand for a typical time of one experiment (~10 ninutes) and
then evacuating the cell gave not CO absorption due to CO in the optical
compartnent of the spectrometer.

Temperature was controlled by an Omega Model 2010 temperature controller
using heating cartridges placed in cavities in the cell body and monitored by
copper—constantin thernmocouples placed near the inner wall of the cell and
placed within the gas voluue but out of the optical path. A check of the cell
temperature by an Omega !fodel 2168A digital thermometer inserted into the body
of the cell gave temperature readings within 5 K of those reported by the
controller thermocouple. All tenmperatures reported as actual are the
tenperatures of the cell body. After filling the cell, the gas was allowed to
stand for three to five minutes to reach the temperature of the cell. Waiting
for longer periods of tine gave no significant change in calculated
tenperature. No correction was made for temperature variations in the
vicinity of the cell windows. At temperatures greater than 550 K, somne
conversion of CO to CO, was observed for the cell containing CO plus air.

The experimental setup for the low pressure flame experiments is shown in
Figure 4. The optical pathlength within the burner chamber was approximately
6 cn. The burner head was constructed entirely of Pyrex, with the burner
housing constructed of brass and aluninum. Gas flow to the nixing section
below the burner head was regulated by calibrated floating-ball type
flowneters. Pressure was neasured using an MKS Instruments Baratron
capacitance manometer and regulated by adjusting a valve downstream from the

.
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flowneters. Windows were of LiF. A low pressure (<100 torr operation), the
flame is lifted off the burner surface by 2-4 mm, preventing damage to the
Pyrex burner frit. Data was collected at the maxinmum iris setting of the
spectrometer. Although maximizing sample compartment aperture increases the
likelihood of resolution errors due to beam divergence, the beam waist at all
times was lLept within the limits built into the spectrometer. No correction
was applied to reflect any non—collimated beam related errors.

V. RESULTS AND DISCUSSION

The results of temperature calculations using the temperature controlled
gas cells for the range 300 K to 773 K are shown in Table l. Values of x and
y used in calculations over this temperature range were 1.818 and 1.748,
respectively. At temperatures above 600 K, the P branch of the ro-vibrational
envelope of CO was used in the calculations (see discussion above). Figure 5
shows a plot of E(n)/k vs. ln(AobSX/{(ZDam 0)y-_|m|F(m)vm}) for samples of CO
held in the temperature controlled cells over the temperature range 302 K to
773 K. The slope of the best straight line Ezrough each set of data obtained
by the weighted linear least squares routine " is equal to 1/T. In all cases,
calculations yield gas temperatures within 107% of the cell temperature.
Neglecting the one calculated point at 620 K, calculated teuperatures are
within 5% below 700 K. The best results were obtained when ghe temperature of
the gas was near 400 K. This is in contrast to earlier work” in which the
best results were found at room tenperature. The reason for this difference
is that our fit to Eq. (1) is more accurate for small values of A o (£3) than
for cases where x and y in Eq. (6) are equal to 2. As average peak
absorbances of individual lines decrease with increasing temperature (total
nunber of lines increases), an approximation to Eq. (1) which emphasizes small
values of A yields a tenperature that is closer to actual than when x and y
in Eq. (6) are equal to 2.

The curvature in the far right-hand side of the plots in Figure 5 in the
region corresponding to low values of J" is analogous to that seen in
Reference 5. This arises from the fact that CO fundamental absorbances with
low values of J" have the larges a, and smallest value of the resolution
parameter, R. Spectra of lines with small resolution parameters and small
absorbances have been shown”’” not to adhere to a linear rela%ionship between
log(Ap ) and log(A,,c) when obtained using triangular or sinc” instrument line
shape ?ILS) functions.

Figure 6 shows a portion of the absorbance spectrun of a rich low
pressure (64 torr) premixed methane/nitrous oxide burner flame used in the
calculation of rotational temperatures of CO. The CO hot band (v=1-2) P
branch transitions were chosen for the analysis because the hot band
transitions are shifted to lower energy than those transitions_Tf the
fundanental. Also, iTterference fron COp bands around 2349 cm © and from N0
bands around 2223 cm ~ makes finding suitable lines in the fundamental of CO
difficult. Hot band transitions were chosen to discriminate against any cold
CO near the inner surfaces of the burner chamber windows. Peaks were
identified by calculating the peak locations for the v=1-2 ro-vibrational
envelope of CO from spectroscopic constants. All calculations agreed within
a few hundredths of a wavenumber with the peak locations reported by the
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lHattson peak picking software. Table " shows calculuted CO rotational
tenperatures as a function of tne distance of the center of rhe IR bean above
the burner frit surface.

Table 1. Calculated and Actual CO Temperatures for the Tenmperature
Controlled Gas Cells Used in These Experiments Over the Range
302 to 773 K

11

Actual Calculated Standard Total Actual-Observed
Temperature Tenperature Deviation Pressure Temperature
(Kelvin) (Kelvin) (Kelvin) (torr) (Kelvin)
302 299 4 166.8 3
302 297 4 164.7 5
302 296 4 166.8 6
313 306 5 760 7
322 313 3 196.7 9
323 319 5 163 4
325 323 6 141.8 2
332 324 4 184.7 3
343 335 4 195.1 8
343 337 4 189.6 6
344 340 6 152.1 4
363 364 7 127.3 -1
364 360 5 190.3 4
304 360 4 193.5 4
373 369 5 194 4
373 369 5 196.2 4
374 373 6 164 1
413 415 9 140.9 =2
413 416 9 141.4 -3
432 432 8 164.8 0
433 436 11 115.1 -3
438 437 8 184.6 1
473 477 3 760 -4
473 478 5 760 -5
576 602 9 760 -26
592 594 16 760 -2
674 620 61 760 54
674 672 13 760 2
674 673 40 760 1
773 758 23 760 15
773 813 48 760 =40
773 817 35 760 =44
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Figure 6. Spectrum of a Rich CH,/N,0 Flame at 64 Torr. Peaks marked
with * are due to the P branch of the v=1-2 transition in CO.

Table 2, Calculated CO Rotational Temperatures as a Function of the
Distance Between the Center of the IR Beam and the Burner Frit Surface

Burner Surface Observed Standard

to Bean Center Tenperature Deviation
(cn) (Kelvin) (Kelvin)
0.5 1524 107
0.9 1516 107
1.3 1517 106
1.7 1515 113
2.1 1518 111
2.5 1542 111
2.9 1559 105
3.3 1579 10
3.7 1639 105
4.1 1704 110

13




Figure 7 shows a plot of E(m)/k vs. 1ln(A,, */{(2Da o)y'llmlF(m)vm}) for
the burner flame experiments. Since the observed absorbances are very weak
(maximunm less than 0.12), we used the approximation to true peak absorbance
from observed peak absorbance fou the range of true peak absorbance from 0.1
to 1.0 (x=1.287, y=1,208). The flame temperatures reported here are lower
than adiabatic fc¢: the methane/nitrous oxide flanme system.16 Ve believe this
iz because the snall burner chamber acted as a heat sink for the flame. No
thernocouple measurements were nade of the flame temperature within the burner
chamber. Also, because we were unable to find published data for the a, of
the hot band spectral, we used the values for the fundamental. Finally, we
nade no provision for broadening of the CO lines by gases other than CO, so in
effect, we were treating our data as if it were obtained in a chamber of pure
CO. Our reasons for this stenmed from the many different species present in
the flame and our inability at this time to quantify many of these species,
particularly nitrogen.

VI. CONCLUSION

Calculaticns of rotational temperatures of CO at high tenperatures and of
CO participating in combistion reactions by use of simple graphical methods
applied to FTIR spectra have been shown to be accurate within 10% (and usually
much less) of actual temperature up to 800 K. Graphical analysis of the ro-
vibrational structure of the fundamental absorption of CO gives results which
indicate :hat the simple method employed here has practical applications,
especially when an accurate approximation to true peak absorbances is used.
Results from spectra of flames are encouraging but more work is needed. Ve
are presently engaged in pursuing this area of research.
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